Mechanistic modelling of the milling process using an adaptive depth buffer
نویسندگان
چکیده
A mechanistic model of the milling process based on an adaptive and local depth buffer is presented. This mechanistic model is needed for speedy computations of the cutting forces when machining surfaces on multi-axis milling machines. By adaptively orienting the depth buffer to match the current tool axis, the need for an extended Z-buffer is eliminated. This allows the mechanistic model to be implemented using standard graphics libraries, and gains the substantial benefit of hardware acceleration. Secondly, this method allows the depth buffer to be sized to the tool as opposed to the workpiece, and thus improves the depth buffer size to accuracy ratio drastically. The method calculates tangential and radial milling forces dependent on the in-process volume of material removed as determined by the rendering engine depth buffer. The method incorporates the effects of both cutting and edge forces and accounts for cutter runout. The simulated forces were verified with experimental data and found to agree closely. The error bounds of this process are also determined. q 2003 Elsevier Ltd. All rights reserved.
منابع مشابه
Modelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool
Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...
متن کاملDynamic modelling of hardness changes of aluminium nanostructure during mechanical ball milling process
In this research, the feasibility of using mathematical modelling in the ball milling process has been evaluated to verify the hardness changes of an aluminium nanostructure. Considering the model of normal force displacement (NFD), the radius of elastic-plastic and normal displacement of two balls were computed by applying analytical modelling and coding in MATLAB. Properties of balls and alum...
متن کاملThe Milling of Metalsthrough Adaptive Neuro-FuzzyInference System (ANFIS) for non-touch Measuring of the Temperature to Reduce Coolant
In this paper, an innovated method is used for cooling Milling zone of Stainless Steel via Adaptive Neuro-Fuzzy Inference System (ANFIS) using non-touch laser thermometer for non-touch measuring of the temperature. This method is economically appropriate because of its optimization in using coolant. In comparison to the ways which were designed to optimize the ratio of coolant, this method is t...
متن کاملCutting Force Prediction in End Milling Process of AISI 304 Steel Using Solid Carbide Tools
In the present study, an attempt has been made to experimentally investigate the effects of cutting parameters on cutting force in end milling of AISI 304 steel with solid carbide tools. Experiments were conducted based on four factors and five level central composite rotatable design. Mathematical model has been developed to predict the cutting forces in terms of cutting parameters such as he...
متن کاملApplication of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts
Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computer-Aided Design
دوره 35 شماره
صفحات -
تاریخ انتشار 2003